

Visit us at www.agyatgupta.com

Q.1

Q.2

Q.3

0.4

0.5

Q.6

Q.7

CODE:2101-AG-6

General Instructions :-

- All Ouestion are compulsory : (i)
- This question paper contains 29 questions. (ii)

TARGET

Question 1-4 in Section A are very sort-answer type question carrying 1 (iii) mark each.

EXCELLENCE

AGYAT GUPTA (M.Sc., M.Phil.)

- Question 5-12in Section B are sort-answer type question carrying 2 (iv) mark each.
- Question 13-23 in Section C are long-answer-I type question carrying 4 (\mathbf{v}) mark each.
- Question 24-29 in Section D are long-answer-II type question carrying (vi) 6 mark each
- (vii) There is no overall choice. However, internal choice has been provided in 3 question of four marks and 3 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- (viii) Use of calculator is not permitted.
- (ix) Please check that this question paper contains 6 printed pages.
- Code number given on the right hand side of the question paper should (x) be written on the title page of the answer-book by the candidate.

Visit us at www.agyatgupta.com PRE-BOARD EXAMINATION 2017-18 Time: 3 Hours Maximum Marks : 100 MATHEMATICS CLASS – XII CBSE Write the number of all possible matrices of order 2×2 with each entry 0 or 1 and whose determinant is positive. Find λ when the projection of $\hat{i} + \lambda \hat{j} + \hat{k}$ on $\hat{i} + \hat{j}$ is $\sqrt{2}$ units. Let relation $R = \{(x, y) \in w \times w : y = 2x - 4\}$. If $(4, b^2)$ belong to relation R, find the value of b. If $f: R \to R$ is defined by $f(x) = \frac{x}{x^2 + 1}$, find f(f(2))**PART – B** (Question 5 to 12 carry 2 mark each.) Solve the following equation : $3\sin^{-1}\frac{2x}{1+x^2} - 4\cos^{-1}\frac{1-x^2}{1+x^2} + 2\tan^{-1}\frac{2x}{1-x^2} = \frac{\pi}{3}.$ Two cards are drawn without replacement from a well shuffled pack of 52 cards. Find the probability that one is a king and other is a queen of opposite color. Find the integrating factor for the linear differential equation $\left| (y^2 - 1) + 2xy \frac{dy}{dx} = \left(\frac{2}{v^2 - 1}\right) \frac{dy}{dx}. \right|$

Q.8
Find the matrix X for which
$$\begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} X = \begin{bmatrix} 3 & 0 \\ 43 & 22 \end{bmatrix}$$
.
Q.9
Evaluate: $\int \frac{\sqrt{x^2 + 1} \left[\log \left(x^2 + 1 \right) - 2 \log x \right]}{x^4} dx$

The side of an equilateral triangle increases at the uniform rate of 2 Q.10

Target Mathematics by- Agyat Gupta; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony visit us: aqvatqupta.com ; Ph. : 49201718, 2630601;7000636110(O) Mobile : 9425109601(P)

Visit us at www.agyatgupta.com

	cm/sec. find the rate of increase in the area of the triangle when the side		
0.11	is 20 cm.		
Q.11	If $a > b > c > 0$, prove that		
	$\cot^{-1}\left(\frac{1+ab}{a-b}\right) + \cot^{-1}\left(\frac{1+bc}{b-c}\right) + \cot^{-1}\left(\frac{1+ca}{c-a}\right) = \pi.$		
Q.12	If \hat{a} , \hat{b} and \hat{c} are mutually perpendicular unit vectors, then find the value		
	of $ 2\hat{a}+\hat{b}+\hat{c} $.		
	PART – C (Question 13 to 23 carry 4 mark each.)		
Q.13	Evaluate : $\int (2\sin 2x - \cos x) \left(\sqrt{6 - \cos^2 x - 4\sin x} \right) dx$		
Q.14	A cylinder of greatest volume is inscribed in a cone, show that Volume		
	of the cylinder = $\frac{4}{27}\pi h^3 \tan^2 \alpha$. Where r, h, α are the radius,		
	height and semi – vertical angle of the cone and R, H are the radius and height of the inscribed cylinder.		
Q.15	Find the particular solution, satisfying the given condition, for the		
	differential equation $\frac{dy}{dx} - \frac{y}{x} + \cos ec\left(\frac{y}{x}\right) = 0, y = 0$ when $x = 1$.		
	OR		
	$\begin{bmatrix} e^{-2\sqrt{y}} & r \end{bmatrix} dr$		
	Solve the differential equation $\left[\frac{e^{-2\sqrt{y}}}{\sqrt{y}} - \frac{x}{\sqrt{y}}\right]\frac{dy}{dx} = 1$; $(y \neq 0)$ and		
	y(1) = 2.		
Q.16	Determine the values of a & b for which the function		

Visit us at www.agyatgupta.com $\overline{\sin(a+1)x+2\sin x}, \text{ for } x \langle 0 \rangle$ $\frac{x}{\sqrt{1+bx}-1}, \text{ for } x > 0$, for x = 0 is continuous at x = 0 $f(x) = \begin{cases} \\ \end{cases}$ **Q.17** Find the interval in which $f(x) = \sin 3x - \cos 3x$, $x \in (0,\pi)$, is strictly increasing or strictly decreasing. OR Find the point on the curve $9y^2 = x^3$, where the normal to the curve makes equal intercepts on the axes. Q.18 If $y = x \log\left(\frac{x}{a+bx}\right)$ then, prove that $x^3 \frac{d^2y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2$. OR If $x = a \sin 2t(1 + \cos 2t)$ and $y = b \cos 2t(1 - \cos 2t)$, then find $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$. The probability of India wining a test match against West Indies is 1/3. Q.19 Assuming independence from match to match. Find the probability that in a 5 match series India's second win occurs at the third test. Q.20 Vectors a, b, c are of the same magnitude and taken pairwise in order form equal angles. If $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = \hat{j} + \hat{k}$ find \vec{c} . Q.21 $\begin{vmatrix} -2a & a+b & a+c \end{vmatrix}$ Prove that : |b + a - 2b - b + c| = 4(b + c)(c + a)(a + b). $\begin{vmatrix} c+a & c+b & -2c \end{vmatrix}$ Q.22 | Find the value of k for which the following lines are perpendicular to each other $\frac{x+3}{k-5} = \frac{y-1}{1} = \frac{5-z}{-2k-1}; \frac{x+2}{-1} = \frac{2-y}{-k} = \frac{z}{5}$. Hence find the

Target Mathematics by- Agyat Gupta; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony visit us: agyatgupta.com ; Ph. : 4920171®, 2630601;7000636110(O) Mobile : <u>9425109601(P)</u>

Visit us at www.agyatgupta.com

	visit as at www.ugjutgaptateom		
	equation of the plane containing the above lines.		
Q.23	A bag contains (2n+1) coins. It is known that 'n' of these coins have a		A =
	head on both its sides whereas the rest of the coins are fair. A coin is		If $A =$
	picked up at random from the bag and is tossed. If the probability that		
	the toss results in a head is $\frac{31}{42}$, find the value of 'n,.		result fi
	PART – D (Question 24 to 29 carry 6 mark each.)	Q.28	An aero
Q.24	Let $A = W \times W$ and let *be a binary operation on A defined by (a, b) *		1000 is
-	$(c,d) = (ad + bc, bd)$ for all $(a, b), (c,d) (a, b), (c,d) \in W \times W.$		made of
	(1) Show that * is commutative on A.		for exec
	(2) Show that * is associative on A.		to trave
	(3) Find the identity element of * in A.		many ti
Q.25	Show that the equation of a plane, which meets the axes in A, B and C	0.00	for the
-	and the given controid of the triangle ABC is the point (α, β, γ) , is	Q.29	
			Evaluat
	$\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$. If 3p is distance of plane from origin, show that		
	$\alpha^{-2} + \beta^{-2} + \gamma^{-2} = p^{-2}.$		
	OR		Evaluat
	Find the image of the line $\frac{x-1}{0} = \frac{y-3}{1} = \frac{z-4}{7}$ in the plane $2x - y + z + 3 = 0$.		
Q.26	Using integration, find the area of the region		
	$\{(x, y): x^2 + y^2 \le 1 \le x + \frac{y}{2}; x, y \in R\}$		" THE T
Q.27	If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, prove that $(aI + bA)^n = a^n$. I + na^{n-1} bA where I is a unit		
	matrix of order 2 and n is a positive integer.		

Visit us at www.agyatgupta.com $\begin{vmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{vmatrix}$, verify that $A^3 - 6A^2 + 9A - 4I = 0$. Using the find A^{-1} . roplane can carry a maximum of 200 passengers. A profit of Rs is made on each executive class ticket and a profit of Rs 600 is on each economy class ticket. The airline reserves at least 20 seats ecutive class. However, at least 4 times as many passengers prefer el by economy class than by the executive class. Determine how tickets of each type must be sold in order to maximize the profit airline. What is the maximum profit? $ate: \int_{0}^{\pi/4} \frac{\sec x}{1+2\sin^2 x} dx$ OR ***** TWO MOST POWERFUL WARRIORS ARE PATIENCE AND TIME "